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Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in
praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen
vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-
doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we
investigate the importance of that effect by conducting simulations with and without a repulsive
interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity
increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants
trap vacancies, creating a “traffic jam” that decreases conductivity, which is consistent with the
experimental findings. The modeled effective activation energy for vacancy migration slightly increased
with increasing dopant concentration in qualitative agreement with the experiment. The current
methodology comprising a blend of first-principle calculations and KLMC model provides a very
powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Ceria related materials are considered to be one of the most
promising materials for intermediate temperature fuel cell appli-
cations because of their high ionic conductivity, which in turn
facilitates the reduction of their operating temperature and
thereby eliminates several technological problems. As a result,
oxygen vacancy migration in ceria and doped ceria has received
major attention as it affects the performance of this material
when used as the electrolyte and anode material within solid
oxide fuel cells (SOFC) [1-6]. In our previous study, we high-
lighted various applications of praseodymium-doped ceria (PDC)
[7] and presented a detailed first-principles (DFT+U) description
of vacancy diffusion in PDC.

The results of those first principle calculations are ideally
suited for input into kinetic lattice Monte Carlo (KLMC) models
of vacancy diffusion. Monte Carlo methods have been used in the
past to study materials for electrolyte applications in SOFC [8-13].
Most [8-10,12,13] of these studies used density functional theory
(DFT) methodology and one [11] used semi-empirical potentials
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to determine the energetics for oxygen vacancy diffusion in
oxides (yttria-stabilized zirconium and yttria-doped ceria).
Among the studies performed using DFT methodology, some
[8,9,12,13] of the studies determined activation energies from
static calculations, and one [10] study determined energetics
from ab initio molecular dynamics. The resulting activation
energies were used as input into KLMC models of oxygen vacancy
diffusion. However, none of these models included the effect of
vacancy-vacancy interaction, which we find to be significant.
Overall, these earlier calculations demonstrate that kinetic Monte
Carlo is a powerful technique for investigating oxygen vacancy
diffusion (and hence ionic conductivity) in doped oxides.

On the basis of percolation theory and neglecting the Coulomb
repulsion between vacancies, Meyer et al. [14] deduced that for
systems with fluorite structure, at low dopant concentrations,
there are many percolating paths to enable vacancies to diffuse.
They interpreted that at higher dopant concentration, many
diffusion pathways are blocked due to attraction of vacancies
to the dopants leading to a decrease in ionic conductivity.
Previous calculations used Monte Carlo approaches to analyze
oxygen mobility in complex oxide systems like CeO,-ZrO, and
Ce0,-Zr0,-Lay05 in platinum catalysts [15], determining the
equilibrium composition profile across a coherent interface in
Sm-doped ceria [16]. Hull et al. [17] performed analysis of the total
scattering using reverse Monte Carlo modeling of anion deficient
ceria. They showed that the oxygen vacancies preferentially align
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as pairs in the (111) cubic directions as the degree of nonstoi-
chiometry increases.

Molecular dynamics simulations have been used earlier to
identify the trends in ionic conductivity as a function of dopant
concentration. Hayashi et al. [18] used molecular dynamics
simulations to investigate oxygen diffusion and the microscopic
structure of ceria-based solid electrolytes with different dopant
radii. Inaba et al. [19] studied oxygen diffusion in Gd-doped ceria
using molecular dynamics simulations. They attributed the larger
size of the trivalent Gd dopant ion to the higher calculated
diffusion constant as compared to Y-doped ceria. An issue with
molecular dynamics simulations is that they are performed over a
very short time frame that can lead to insufficient statistical
sampling of various configurations.

Since KLMC methods have proven very useful in the investiga-
tion of oxygen diffusion in other oxides, it makes sense to apply
this methodology to Pr-doped ceria. Previous KLMC models have
often suffered from two limitations: (1) very limited data on
dopant effects on vacancy migration, often limited to a single
binding energy, when in fact our calculations reveal that the
dopant vacancy interactions can be very complex, and (2) a failure
to include the effect of repulsion between the oxygen vacancies,
which we will show is a significant effect at higher concentra-
tions. In this article we develop a KLMC model that overcomes
both of these limitations, and use it to investigate the effects of
dopant concentration and temperature on ionic conductivity.
Thus, the model can be used as a design tool to determine the
optimal concentration of Pr dopants for maximizing ionic
conductivity.

2. Computational methodology

Monte Carlo (MC) techniques were developed originally by
Von Neumann, Ulam and Metropolis [20] and broadly refer to
diverse approaches to unraveling problems involving the use of
random numbers to sample the ensemble. Kinetic Lattice Monte
Carlo (KLMC) is one such approach used to model Ilattice
dynamics with the evolution of time. In the KLMC model, all
atoms are assumed to occupy lattice sites that coincides with the
local potential minimum with a potential barrier, E,,, separating
the adjacent lattice sites. The only meaningful events in KLMC
simulations are those involving transfer or exchange of atoms
from one lattice site to another. In this paper we focus on a
vacancy diffusion mechanism, so we save computational memory
and effort by only tracking the oxygen vacancies, and assume all
other sites are occupied. In events where E,, < kg, the transition
rate of a vacancy moving from lattice site x to y is evaluated by
the hopping mechanism governed by the Arrhenius Law:

qxy = nye(iExy/kBT) 1)

Here, vy, represents the attempt frequency for an atom
hopping from lattice site x to y. The harmonic approximation of
the effective attempt frequency corresponding to the defect
vibrations can be expressed using the dynamical matrix the-
ory [21] as:
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where “v™" and “v*®" represent normal mode frequencies at the

minimum and saddle point position of the hopping atom, respec-
tively, and N is the numbers of ions. The KLMC model requires
input rates for various allowable events, such as diffusion and
reactions. One key aspect of the KLMC algorithm are these input

rates, since if these rates are known then one can accurately
simulate time-dependent diffusion of various species. The pros
and cons of various approaches for identifying the rate process
database in a KLMC simulation are explained by Adams et al. [22].
KLMC simulations based on a set of kinetic atomic-scale processes
can describe the evolution of mesoscopic systems up to macro-
scopic times. In this way, we have developed a 3-D KLMC model
of vacancy diffusion in ceria and doped ceria. This model will
further enable us to calculate ionic conductivity of various doped
materials with respect to the dopant concentration.

The KLMC technique is based on a blend of Monte Carlo’s
approaches and Poisson’s processes. In the current KLMC model,
the material in consideration can consist of various possible
events and evolve as a series of independent events occurring in
accordance with the input rates. Assuming Arrhenius’s depen-
dence, the diffusivity can be expressed as:

D = Dyexp <ﬂ> 3)

kBT

where Dy is the pre-exponential factor, T is the absolute tempera-
ture and kg is the Boltzmann constant. The term AE, generally
comprises of two contributions: the total migration energy (AEy),
and the vacancy formation energy (AEy). Primarily, most of the
vacancies in ceria-related materials are generated to maintain
the charge balance due to the addition of aliovalent dopants. For
example, the addition of Pr*® to CeO, results in an oxygen
vacancy for every two ionized dopants (this is the stoichiometric
vacancy to dopant ratio of 0.5). Moreover, the vacancy formation
energy in ceria and doped ceria is very high; hence, the concen-
tration of vacancies created thermally in the electrolyte is
extremely small. Consequently, the vacancy formation energy
(AEy) term can be neglected and effectively the energy term in
Eq. (3) consists only of vacancy migration energy (AEy,). We have
argued earlier [7] that the activation energy for vacancy migration
is actually a complex average of many jump events. In this regard,
we have calculated many activation energies of various diffusion
pathways for oxygen vacancy migration in PDC for a vacancy
hopping mechanism [7]. The energies from our previous work [7],
as presented in Table 1, are input to the KLMC model. It should be
noted that, for PDC, the oxygen prefers a second nearest neighbor
(2NN) site, which means that many types of jump events need to
be included (1NN - 2NN, 2NN — 2NN, 2NN - 3NN, etc.) to prop-
erly model the complexity.

The average rate of displacement of defects in solids by
thermal activation can be calculated using classical rate the-
ory [23]. Accordingly, the hopping rate for the defect can be
expressed by Eq. (1). The pre-exponential factor (Do) in Eq. (3)
mainly consists of the jump distance (for ceria it is half the length
of the lattice parameter) and the hopping rate for the migrating
vacancy. In the current work, the jump distances for all first

Table 1

Activation energies for oxygen vacancy migration along distinctive pathways in
PDC calculated using first-principles. E,, denotes activation energy for an oxygen
atom migrating from X-nearest neighbor (XNN) to Y-nearest neighbor (YNN) with
respect to the Pr ion in PDC.

Migration pathway Activation energy (eV)

Eqy 078
E12) 041
Eq3 2.79
Eq21) 043
E2) 0.47
Eo3 057
Egs) 2.69
Eis2) 0.44
Es3) 047
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neighbor jumps were assumed to be constant for various dopant
concentrations as very small changes in O-O bond length
(~0.001 nm) are expected. The attempt frequency (5 x 102 Hz)
was determined from Eq. (2). It is the ratio of the product of 3N
normal frequencies of the entire system at the starting point of
the transition to the 3N—1 frequencies of the system constrained
in the saddle point configuration This value of attempt frequency
was assumed constant for different configurations, as the normal
mode frequencies are not expected to differ significantly.

The KLMC model comprises of a number of ordered events
which take place in a sequence as given in the flowchart in Fig. 1.
We computed the mean square displacement of all the vacancies
in the simulation cell (accounting for crossing periodic bound-
aries) and used the results to calculate the diffusion coefficient of
oxygen vacancies as follows:

Dv = lim

3~ ROROF @
t—o0 " 6t

where t is the sum of all the time steps At, for each jump event
and Ry(t) is the position of the ith vacancy at time t. Following the
computation of oxygen vacancy diffusion coefficient, the ionic
conductivity was calculated using the Nernst-Einstein relation as

given below [1]:

& — DvCitge)”

i= kBT (5)

where ¢; is the ionic conductivity, G; is the concentration of ionic
carriers (vacancies for the present case) and ge their charge.

We used a 10 x 10 x 10 cell comprising of 12,000 possible sites
to place the respective ion. The periodic cell with a 10 x 10 x 10
periodicity was built from a conventional 12-atom cubic unit cell
of ceria using the theoretically optimized lattice constant of
0.5494 nm for bulk ceria [7]. Of these 12,000 positions, 4000 are
available for dopant placement and 8000 sites for vacancy

formation. The vacancies are allowed to hop to adjacent sites,
subject to certain constraints. The simulation cell was repeated
periodically along the three axes to simulate a lattice of effec-
tively infinite extent. The dopant and vacancy concentrations
were varied. All the dopant ions are assumed to be trivalent;
hence, for every two dopant ions, a vacancy was incorporated. For
each of the different dopant concentrations, ten simulations were
performed, each with a different dopant distribution. Each simu-
lation comprised of approximately 3000,000 or more jump
events. This resulted in achieving a statistical average with a
precision of ~ 3% for various dopant concentrations. Considering
the difference of the order of ~ 3% in ionic conductivity for the
simulations involved, the sampling does not require additional
runs for each configuration. The simulations were performed for
temperatures ranging from 673 to 1073 K and approximately
equal diffusion distances were used to calculate the final diffusion
coefficients. To plot the Arrhenius relationship and facilitate
comparison with the available experimental data, some specific
configurations were simulated for temperature ranging from 573
to 1173 K.

We have developed two separate models for PDC, a Vacancy
Non-Repelling model (VNR) and a Vacancy Repelling model (VR).
We performed preliminary calculations using the DFT+U metho-
dology explained in our previous work [7] to investigate vacancy
diffusion in PDC. All the calculations were performed for charge
neutral supercells. We studied two separate cases for PDC:
(i) vacancies are placed next to the dopant ions and (ii) vacancies
are placed far apart from the dopant ions. For case (i), we found
that the configuration involving two vacancies separated by a
distance larger than the 1NN (nearest-neighbor) distance is more
stable by 0.38 eV as compared to the configuration with vacancies
placed next to each other. For case (ii), the configuration involving
two separated vacancies is more stable by 0.28 eV as compared to
the configuration with vacancies placed next to each other. The
observed Coulomb interaction between charged vacancies lead us

[ Start KLMC simulation ]

)

| Input AE, # Dopants, # Vacancies, Cell size |

y

l€
’ Randomly place dopants and vacancies [*

JNo

Check if another dopant or vacancy is present

YES

N

> Randomly pick one vacancy and jump direction

YES

For VR model, check if
the vacancy is NN to
another vacancy

A 2

Check if initial and final position of the
vacancy is near any dopant

Calculate total AE

« Calculate AE

Reject

Accept

Accept/Reject jumy

Zero out all variables, calculate MSD, D, & o

Fig. 1. Flowchart of the major events involved in a KLMC simulation. NN and MSD represent the next neighbor and mean square displacement, respectively; D, is the

diffusion coefficient and ¢ is the conductivity.
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to develop two separate models: (1) in the VNR model, vacancies
are allowed to move anywhere in the simulation cell except into
an existing vacancy and (2) in the VR model, the vacancies are not
allowed to move adjacent (first nearest neighbor) to any other
vacancies in the simulation cell, nor into an existing vacancy.
(It would be slightly more accurate to add the repulsion energy.
But the repulsion energy is so large that it is very rare that
vacancies will move adjacent to one another, so this is a very good
approximation). Previous studies have neglected the Coulomb
interaction between the anionic species, but we find that this
effect is important in correctly characterizing the optimal dopant
concentration in ceria related electrolyte materials.

3. Results and discussion

The energies given in Table 1 correspond to vacancy motion
adjacent to one trivalent Pr ion as shown in Fig. 2. In the presence
of multiple dopant ions, we use an underlying assumption that
every additional Pr dopant in the vicinity of the migrating vacancy
will have an additive effect towards the activation energy for
vacancy migration. For example, for paths (Table 1), INN—2NN
and 2NN - 1NN, we found that the decrease in activation energy
for ceria doped with two Pr ions located next to each other was
twice as much compared to ceria doped with two Pr ions that are
separated. Using first principles calculations [7] we found that in
vicinity of two next neighbor Pr dopant ions, the decrease in
activation energy relative to the undoped ceria for the migration
path INN - 2NN is 0.13 eV as compared to 0.06 eV in presence of
one Pr dopant ion. Similarly, for the migration path 2NN — 1NN,
the respective numbers are 0.07 and 0.04 eV. In the KLMC model,
for the migration paths INN — 2NN and 2NN — 1NN in presence of
two Pr dopant ions, the decrease in activation energy is calculated
to be 0.12 and 0.08 eV, respectively. These numbers justify the
assumption (additive effect of dopants) incorporated in the KLMC

®

@
)

N
N
PRI L

Fig. 2. Top view of a 2 x2x2 PDC supercell. The blue, green and red balls
represent Ce, Pr and O ions, respectively. Numbers 1, 2 and 3 represent 1NN, 2NN
and 3NN oxygen ions with respect to the Pr ion, respectively. (X, Y) represents an
oxygen ion jump from XNN to YNN. Pr ion closer to the migrating vacancy is only
shown. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

model and provide a reasonable approximation of migration
energies in the presence of multiple dopants. Moreover, this
decrease in activation energy for the case where two Pr ions are
next to each other is in reasonably good agreement with results
reported by Andersson et al. [24]. Using this relationship in the
KLMC model, we have simulated diffusion of oxygen vacancies in
the presence of multiple dopants. Under the current assumption,
the estimated activation energies for multiple dopants are prob-
ably valid to about 10 meV at low to moderate concentrations,
but may be larger at higher concentrations.

One of the principal goals of the current effort is to study the
variations in ionic conductivity as a function of dopant concen-
tration in PDC and to determine the optimal dopant concentration
that exhibits a maximum in ionic conductivity. As mentioned
earlier, researchers have previously studied other systems with
similar methodology, but have neglected the Coulomb interac-
tions between the charged vacancies. Hence, we also wish to
investigate the significance of including these effects. Fig. 3(a)
comprises the simulation results for variations in ionic conduc-
tivity as a function of dopant concentration in PDC using the
KLMC-VNR model for temperatures ranging from 673 to 1073 K.
For the temperatures ranging from 673 to 873 K, the maximum in
ionic conductivity is observed at ~25% dopant concentration,
whereas the maxima at temperatures of 973-1073 K are shifted
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T 12802
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~
o
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4,0E-03

0 S 10 15 20 25 30 35 40 45
Pr mol% in PDC
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1.0E-02 gl
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~
£ 6.06-03
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4.0E-03
2.0E-03
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Pr mol% in PDC

Fig. 3. (a) Plot of calculated ionic conductivity of PDC as a function of dopant
concentration generated using KLMC-VNR model for temperature ranging from
673 to 1073 K. (b) Plot of calculated ionic conductivity of PDC as a function of
dopant concentration generated using KLMC-VR model for temperature ranging
from 673 to 1073 K.
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at ~30% dopant concentration. Incorporating the effects of
charged vacancies using the VR model significantly changes the
results. Plotted in Fig. 3(b) are the variations in ionic conductivity
as a function of dopant concentration in PDC using the KLMC-VR
model for temperatures ranging from 673 to 1073 K. The overall
effect of the VR model is to reduce vacancy diffusion, especially at
higher concentrations, which also results in a shift of the peak
conductivity towards lower concentrations. For the temperatures
of 673-773 K, the maximum in ionic conductivity is predicted at
~ 15% dopant concentration, whereas the maximum at tempera-
ture ranging from 873 to 1073 K is predicted at ~20% dopant
concentration.

Considering all the simulations performed for PDC using
KLMC-VNR and VR models, the magnitude of ionic conductivity
is larger for the values obtained using the VNR model. This is a
consequence of the fewer number of available sites for the
vacancies to migrate on the oxygen sublattice for the VR model
due to the vacancy-repelling factor, which decreases the diffusion
coefficient. The computed maximum in ionic conductivity at
around 25-30% dopant concentration using the KLMC-VNR
model agrees well with experiment [25,27], but does not provide
the true picture. Praseodymium is known to have mixed valence
at atmospheric pressure; hence, equilibrium between Pr** and
Pr3* exists is determined by the temperature and oxygen pres-
sure. Hence, only half of the dopant ions are Pr>* [25,28]. This
equilibrium reduces the probable oxygen vacancy concentration
upon doping with Pr; hence, the ionic conductivity increases
more slowly with increase in Pr content as compared to other
aliovalent dopants [29]. In the current simulations performed
using both VNR and VR models, all the Pr dopant ions are
assumed to be trivalent. Hence, the results obtained with the
KLMC models should be compared with experimental data
plotted vs. ionized dopants, not total dopants. In some cases it
has been estimated that only half of the dopants are ionized, so
this is a large effect.

Experimental studies by Shuk and Greenblatt [25] and Chen
et al. [27] found that the maximum in ionic conductivity occurred
at about 30% dopant concentration. If we assume that approxi-
mately half of these dopants are trivalent (in the experiment, only
half of the dopants are ionized) [25,27], the optimal concentration
of dopants (~ 15-20%) as predicted by the KLMC-VR model is
in reasonably good agreement with the measured values. More-
over, the slight discrepancy in the experimental and theoretical
findings can be attributed to the dependence of oxygen vacancy
concentration on the temperature and oxygen partial pressure,
and also to grain boundary effects, effects that are not included in
the KLMC model.

To further investigate the origin behind the calculated max-
imum in the ionic conductivity, we performed additional simula-
tions using the KLMC-VR model at 873 K. Fig. 4 shows two
different scenarios: (i) the vacancy concentration is increased
linearly keeping the dopant concentration fixed at 20% and
(ii) increasing the dopant concentration linearly and keeping the
vacancy concentration fixed at 5%. For case (i), the ionic con-
ductivity keeps increasing, as shown in the figure. The slight dip
in the curve is due to vacancy-vacancy interactions at higher
vacancy concentration, but this effect is modest. Case (ii) results
in a steadily decreasing ionic conductivity. The conductivity
decreases in case (ii) because a growing fraction of the vacancies
get trapped near the dopant ions, decreasing the net diffusion.
This effect is significantly larger than the effect of vacancy-
vacancy interactions (case (i)), which also decreases ionic
conductivity.

Overall, these two investigations explain the increase and then
decrease in ionic conductivity with increasing dopant concentra-
tion. Initially, the ionic conductivity increases at lower dopant

Vacancy % in PDC
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Fig. 4. Plot of calculated ionic conductivity as a function of fixed dopant concen-
tration and fixed vacancy concentration using the KLMC-VR model at 873 K. For
the plot with fixed dopant concentration, the x-axis represents the varying
vacancy concentration.

concentration due to the increase in vacancy concentration, but
after reaching a maximum, it decreases due to increasing inter-
actions between the dopant ions and vacancies that serves as a
bottleneck, decreasing the number of minimum energy pathways
for a vacancy to diffuse.

Nauer et al. [26] reported that the total conductivity of PDC
increases until a dopant concentration of 40-50% is reached. This
is due to the fact that for PDC, beyond 25-30% dopant concentra-
tion, the electronic conductivity exceeds the ionic conductivity
[25]; hence, explains the higher dopant concentration for attain-
ing a maximum in electrical conductivity. Fig. 5(a) shows the
plot of ionic conductivity versus dopant concentration at 973 K
using the KLMC-VNR and VR model. Fig. 5(b) shows data
obtained by experimental measurements performed by Shuk
and Greenblatt [25] and Chen et al. [27]. Depending on the
fraction of dopants that are trivalent, the graph obtained using
the KLMC-VR simulations should be shifted somewhat towards
the right. This is in reasonable agreement with experimental data
if the vacancy concentration is half (in the experiment, only half
of the dopants are ionized) of what should be expected after
the addition of Pr dopant [25,27]. The primary reason for the
discrepancy in the absolute magnitude of the conductivity as
observed from the experimental measurements, as shown
in Fig. 5(b), is probably due to the difference in synthesis methods
of the respective samples [25,27]. Overall, Fig. 5 shows that the
trend of increased conductivity in PDC can be reasonably pre-
dicted using KLMC-VR model if the fraction of ionized dopants
is known.

The primary reason for the decrease in the ionic conductivity
with increasing dopant concentration is the increase in average
activation energy for vacancy migration and the percent increase
of Pr ions near the migrating vacancy. The increasing number of
Pr ions often tends to bind the neighboring oxygen vacancy more
strongly and decrease the diffusion coefficient, which in turn
decreases the oxide ion conductivity. At low dopant concentra-
tion, the number of available minimum energy diffusion path-
ways is higher. For PDC, the formation of an oxygen vacancy
is found to be most favorable at the 2NN position [7] to the Pr
dopant; hence, the available minimum energy pathways keep
decreasing with increasing of dopant ion concentration leading to
this behavior. Thus the simulations results, obtained using the
KLMC-VR model, show reasonable agreement with the experi-
mental data and highlight the importance of including the
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Fig. 5. (a) Ionic conductivity data calculated for PDC obtained using KLMC-VNR
and VR models for simulations performed at 973 K. In both KLMC models, we
assume that all the dopants are ionized. (b) lonic conductivity data for PDC
obtained by experimental measurements performed at 973 K. For the experi-
mental results from Refs. [25,27], only half of the dopants are ionized.

Coulomb interactions between the anionic species. Hence, the
current methodology serves as a fundamental tool for predicting
the optimal dopant concentration in PDC.

Fig. 6(a) and (b) shows values of ionic conductivity as a
function of inverse temperature for CeggoPro1002_x and
Ceo.30Pro2002 _x respectively, obtained from KLMC simulations
and experimentally measured values [25,26]. The Arrhenius type
behavior of the ionic conductivity for this particular configuration
is visible with all the simulation data points for KLMC-VNR and
VR models lying on straight lines. The simulation results agree
reasonably well with the experiments with some discrepancy in
the magnitude of ionic conductivity, but this could be due to the
reasons mentioned above. For Fig. 6(b), our theoretical results
are in the middle of two sets of experimental measurements, and
the trends with temperature are very similar. Ref. [26] is the total
conductivity, whereas our model and Ref. [25] included only the
ionic contribution to the conductivity. Several other plots for
different compositions have been studied and the general trends
and conclusions that can be drawn are analogous.

A vacancy can move through a number of distinctive diffusion
pathways before finally diffusing across an ionic conductor such
as PDC. Determination of the rate-limiting step for a path is
complex, because it depends on the dopant concentration and
arrangement. The input rates used for the KLMC simulations were
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Fig. 6. (a) Arrhenius plot of ionic conductivity of 10 mol% PDC as a function of
temperature ranging from 573 to 1173 K for the KLMC simulations and 573 to
973 K for the data measured by experiments. (b) Arrhenius plot of ionic
conductivity of 20 mol% PDC as a function of temperature ranging from 573 to
1173 K for the KLMC simulations and 573 to 973 K for the data measured by
experiments.

evaluated using the DFT+U calculations [7] and provide a very
reasonable initial assumption, but the migration energy for a
complete diffusion path cannot be associated with a single
migration event. It has to be averaged using a statistical model
that takes into account the distinct pathways involved during
diffusion. Moreover, the migration energies generated using first-
principles are applicable for processes occurring at 0 K. Hence we
have compared the statistically averaged migration energies
elucidating the temperature dependence with the experimentally
measured values. Fig. 7 shows averaged activation energy for
vacancy migration as a function of dopant concentrations. The
activation energies presented in Fig. 7 are computed from the
slopes of similar Arrhenius plots as seen in Fig. 6(a) and (b).

The plots of average activation energy as a function of dopant
concentration generated using KLMC-VNR and KLMC-VR simula-
tions show similar behavior with the former having slightly lower
magnitude. The experimental values taken from the measure-
ments performed by Shuk and Greenblatt [25] are compared with
those obtained from simulations in Fig. 7. The experimental and
theoretical values are in good agreement at low dopant concen-
trations, and both increase with increasing dopant concentration,
but the effect is larger for the experimental data, although there
are significant error bars. The small increase in the activation
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Fig. 7. Average activation energy as a function of dopant concentration for PDC
compared with the available experimental data. The experimental data involves
error bars of 50 meV.

energy for vacancy migration at dopant concentrations ranging
from 5 to 15% as seen in Fig. 7 from simulations is primarily due
to negligible interactions between oxygen vacancies and dopant
ions. At higher dopant concentrations, the increase in average
activation energy for migration is due to the increased likelihood
of finding two next neighbors Pr-Pr or Pr-Ce ions pairs near an
oxygen vacancy, where a higher energy is needed to overcome
these barriers. Any further increase in the Pr ions can eventually
trap the vacancy and form a bottleneck for diffusion. This is also
evident from the earlier explanation and Fig. 4, where the
increase in dopant concentration is found to be primarily respon-
sible for the decrease in ionic conductivity after attaining a
maximum. The differences between theory and experiment may
be partly due to: (1) limitations in the DFT data used as input, (2)
assumptions involved in the KLMC model regarding activation
energies, (3) the uncertainty of the order of 50 meV in measured
values, (4) the experimental samples are polycrystalline, so grain
boundaries may have a small effect and (5) variations in sintering
temperature may affect the level of reduction of the experimental
samples. Nauer et al. [26] reported an experimentally measured
value of activation energy ranging between 0.42 and 0.53 eV for
20% dopant concentration for PDC as compared to the average
activation energy value 0.39 eV obtained for similar dopant
concentration by KLMC simulations. Keeping this in mind, the
averaged activation energies obtained from KLMC simulations are
in reasonable agreement with the measured values.

4. Conclusions

We have used KLMC simulations in conjunction with our
previously performed first-principles calculations to investigate
oxygen vacancy diffusion in PDC. The increase in average activa-
tion energy for vacancy migration as a function of dopant concen-
tration is due to the increase in Pr-Pr dopant pairs that hinder
further motion of the oxygen vacancies. The current findings are
found to follow similar trends as compared with the previously
measured values. A dopant concentration of approximately

15-20% is found to be optimal for achieving maximum ionic
conductivity in PDC. The KLMC simulations are in reasonably
good agreement with the available experimental data, when we
take into account that only about half of the dopants are ionized.
The decrease in ionic conductivity with increasing dopant con-
centration is correlated with the increase in average activa-
tion energy for vacancy migration from the vicinity of the dopant
pairs and the subsequent decrease in availability of minimum
energy pathways for the vacancy diffusion. Based on the reason-
able agreement with experimental measurements, we believe
that the current model can be used as a design tool to predict
the optimal dopant concentration for attaining maximum ionic
conductivity.

The KLMC code developed for this project will be available
for download in the near future from: http://enpub.fulton.asu.
edu/cms/
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